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Abstract

The Testability of Interaction-Driven Manufacturing Systems project seeks to enhance the design-for-
testability of specifications for manufacturing software interfaces, derive a test method that is usable for
interaction-driven manufacturing systems in general, and foster the reuse of testing artifacts.  For our first
testability study we constructed some prototype conformance and interoperability tests for the Product Data
Management Enablers standard from the Object Management Group.  We reused test data developed for
the Product Data Management Schema, a developing standard based on ISO 10303 (informally known as
the Standard for Exchange of Product model data), and enumerated the lessons learned for testing and
testability.  We plan to reuse some of our new testing artifacts for testing an ISO 10303 Standard Data
Access Interface to data based on the Product Data Management Schema.

(Keywords:  interface, OMG, PDES, product data management, STEP, testability, testing)

1. Introduction

Integration technologies such as the Common Object Request Broker Architecture (CORBA)1 and the
Component Object Model* (COM)2 have changed the way that software systems for manufacturing and
other domains are built.  Components that were originally deployed in different places and times are now
being wrapped with standard interfaces and made to interact with one another.  This practice has created a
new category of problems for software testers, who must not only find component faults, but also
integration faults such as unintended interactions between components and misunderstood interface
semantics.

The Testability of Interaction-Driven Manufacturing Systems (TIMS) project3 in the Manufacturing
Engineering Laboratory of the National Institute of Standards and Technology is seeking to develop a
capability for testing in this new environment and to collect requirements for testability that can be
designed into future specifications.  Product Data Management (PDM) is now a focus for standardization in
the manufacturing domain and promises to present some of the most important challenges in testing and
testability in years to come.  For this reason we made it a primary target for TIMS attempts to "learn by
doing" by developing test methods and extracting the requirements for testability.

Our testability study helped us to identify a variety of features that affect the testability of a specification.
Those features are introduced in the next section to provide context for the specific examples that will be
discussed later.

                                                          
* Commercial equipment and materials are identified in order to describe certain procedures.  In no case
does such identification imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are necessarily the best available
for the purpose.
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Our work focuses on two significantly different, yet conceptually related PDM standards:  version 1.1 of
the Object Management Group’s (OMG)4 PDM Enablers (PDME) specification,5 and the PDM Schema6

based on ISO 10303 the Standard for the Exchange of Product Model Data (STEP)7 using STEP’s Standard
Data Access Interface (SDAI).8  These are both specifications for application interfaces to PDM systems,
but they are from different sources and designed for different purposes.  Our goal is to find methods that
exploit the conceptual commonality, yet remain adaptable to the very different environments in which the
two specifications are defined.  The sections following the inventory of testability features detail our
approach, the specific testability issues that we encountered so far, and lessons learned for the testing
approach itself.

2. Inventory of testability features

2.1. Application interface specification

An obvious prerequisite for creating a test suite to exercise a given system is the availability of a well-
specified interface.  Systems that implement a standard application interface are inherently more testable
than systems that only make their state visible by graphical user interfaces (GUIs) and exchange files
because the test client can interact more directly with the Implementation Under Test (IUT).

For conformance testing of a given interface, there is always the risk that correct behavior is faked
somehow, or that the semantics of the interface are not correctly realized inside of the IUT even though the
correct data are returned.  This is a philosophical issue of when do we find a test result to be credible.  If
multiple application interfaces to a system are specified, we can increase our confidence by testing over all
interfaces.  On the other hand, if the alternate interface is a GUI, we must choose between a strict but
subjective testing approach that looks at the GUI, or a quantitative but lax approach that does not.  While
purists would restrict the scope of testing to exactly those features that are included in the standard interface
specification, pragmatists would balk at test results that disagree with the subjective evidence presented by
the GUI.

2.2. Implementability of the specification

Implementability is the software analog of the concept of manufacturability.*  It is possible to construct
well-formed specifications that are not implementable; that is, some practical consideration, rather than
internal inconsistency of the specification, prevents a conforming IUT from being built.  When this
happens, the IUT and the tester must adopt some nonstandard workaround.  The validity of the tests
remains questionable until the specification is fixed.

2.3. Functional specification

By "functional specification" we mean the specification of the results of functions and operations supplied
by the IUT.  Usually these results are dependent on the inputs and the current state, but not always.

If the functional specification is incomplete, then formal testing is impossible because we have no standard
of correctness.  The best we could do is rely on human judgment to decide whether the results look
"reasonable."

2.4. Usage specification

A usage specification is just that – a specification of how to use something.  It is accepted practice for all
consumer goods to be sold with a user's guide that explains the usage, no matter how obvious it might
seem.  More technically oriented products not destined for the mass market frequently arrive with no user's
guide at all.  Producing a user's guide for a consensus standard might be seen as an unnecessary expense

                                                          
* "A measure of the design of a product or process in terms of its ability to be produced easily, consistently,
and with high quality."  APICS Dictionary, Eighth Edition, 1995.
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because all of the prospective users are involved in the standards process and are presumed to understand
the intended usage.  Unfortunately, it is very possible that the usage understood by one such user is not the
same as the usage understood by another, even though both approaches make perfect sense in their own
context.

There is often a business case for allowing the usage specification to remain ambiguous.  A strong usage
specification is necessary to achieve true, plug-compatible interoperability between independently
developed client programs and vendors’ products, but to comply with a standard that is this strong usually
requires nontrivial changes to the product.  This is compounded by the costs of either maintaining
backward compatibility, i.e., supporting two different software modules when one would do, or of losing an
established customer base because of incompatible changes.

For example, suppose that two pre-standard software products require a client to perform operations in
different orders to accomplish the same goal.  Real interoperability can be achieved either by specifying a
normative ordering of operations or, less optimally, by specifying a set of permissible orderings and a
normative way for the client to determine which one should be used at run time.  A weak usage
specification would leave the order of operations unspecified so that both implementations already
conform.

With a weak standard, clients might need to be rewritten for each revision of a server or for each different
product.  From the user’s perspective, this defeats the main purpose of standardization.  However, if the
apparent costs of complying with a standard exceed the expected benefits, then vendors will not comply,
and the standard itself will be a failure.  To stick with a weak usage specification avoids these risks as well
as the expenses inherent in developing a stronger standard, but testability and interoperability both suffer as
a result.

2.5. Completeness of functional specification with respect to usage

The functional specification must meet all expressed requirements to be considered complete.  A subtler
problem occurs when the functional specification is incomplete with respect to the proposed usage.  In this
case, the functional specification could meet all expressed requirements, yet it would still be impossible to
execute a usage scenario without using some extension to the specification.  An implementation that strictly
conformed to the specification but failed to provide the needed extensions would be "broken as designed."9

Incompleteness with respect to requirements does not necessarily impact testability.  Incompleteness with
respect to usage does because it is impossible to execute a test scenario without relying on unspecified
behaviors.

2.6. Interaction specification

Even if we have complete and consistent specifications for the functions provided by two components in a
system, these do not necessarily define how the components would work together to achieve a specific
goal.  If interoperability and substitutability of components is a goal of the specification, then the
interactions must be completely specified.

When component A expects some function to be supplied by component B, the interaction between these
components that results in this function being provided to component A by component B must be specified
and supported by both components.  The mode of failure when a necessary component is unavailable for
some operation should also be specified.

2.7. Specification of precision and limits

Manufacturers specify tolerances and limits on physical parts as a matter of course, but this vital
information is frequently omitted from information specifications.  Without it, our test verdicts remain
ambiguous.  We do not know how close to the expected result is close enough, and we do not know on
what scale the tests should be run.
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3. General testing approach

A testing approach can be coverage-based or scenario-based.  We elected to follow a scenario-based
approach partly because a plausible usage scenario helps to justify a conformance test.  If a given behavior
is the unique conforming solution to support an intended usage of the standard, then a test that exercises
that behavior is valid against the intent of the standard, if not its letter.  But more important was the value
of scenarios in providing focus for the very small number of tests that we would be able to develop.
Coverage-based approaches are meaningful if a test suite is complete enough to cover a significant portion
of the standard, but if this is not the case, then it is better to cover the "hot spots," those parts of the
standard that are likely to be used most often or most likely to cause problems.

We constructed test clients according to the following outline:

1. Print out boilerplate, normative references, and assumptions.

2. Initialize and set up.

3. Execute test scenario.

4. Check resulting state for correctness.

The test begins with the implementation under test (IUT) in a known state.  Step 3 exercises behaviors that
alter that state, and the observed resulting state is compared against the expected resulting state in step 4.
The test verdict is one of "pass," "fail," or "nogo" (nogo indicates that an operational problem prevented the
test from executing successfully).  Although the most rigorous checking is done in step 4, an IUT can also
fail if incorrect behavior occurs during step 2 or 3.  There may be interactions with the IUT even during
initialization, such as to open a session.  An inappropriate response to one of these operations would
register as a failure.

Step 4 is performed by a component known as the Comparator.  It compares the states of different servers,
produces a verbose log of the states, and flags any differences.  To use the Comparator in conformance
testing, we must supply a reference server containing the expected result state.  In interoperability testing
we would simply execute the test scenario against both servers and then verify that their resulting states
were equivalent (see Fig. 1).  By comparing the states using the on-line interfaces of the servers, we avoid
an export of the states to exchange files, which could potentially lose information in the translation.

The Comparator is conceptually simple and generic.  In our idealized, object-oriented system, objects have
state, behavior, identity,10 and relationships to one another.  The Comparator needs to traverse a graph of
related objects, comparing the objects’ state and identity attributes but not exercising their behaviors.  With
appropriate bindings, this procedure is applicable to all object-oriented databases and to most databases
having even a vaguely object-oriented flavor, including, for example, a database that runs on EXPRESS.11

If the implementation context is CORBA and Interface Definition Language (IDL),12 then state is
implemented with attributes, behavior with operations, and relationships with the standard CORBA
Relationships Service.13  If the implementation context is SDAI/EXPRESS, then state is implemented with
entity attributes, behaviors are non-existent, and relationships are implemented with entity attributes of type
entity,14 i.e., pointers.

Figure 1:  Conformance vs. interoperability testing with the Comparator

IUT Reference

Comparator

Conformance Testing

Vendor 1 Vendor 2

Comparator

Interoperability Testing

Pass, Fail, Nogo
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Unfortunately, what was simple in theory had complications in practice that we describe later in this paper.

4. PDM Enablers

PDM Enablers is a specification of the Manufacturing Domain Task Force (MfgDTF)15 within OMG.  The
purpose of PDME is to "provide the standards needed to support a distributed product data management
environment as well as providing standard interfaces to differing PDM systems."16

PDME defines twelve modules.  Three of these – PdmResponsibility, PdmFoundation, and PdmFramework
– are "basic" modules, providing common infrastructure for the others:  PdmBaseline, PdmViews,
PdmDocumentManagement, PdmProductStructureDefinition, PdmEffectivity, PdmChangeManagement,
PdmManufacturingImplementation, PdmConfigurationManagement, and PdmSTEP.  Testing the entire
specification would not have been feasible with our resources, so we limited our scope to
PdmDocumentManagement, PdmProductStructureDefinition, and portions of the other modules on which
they depend.

Section 1.16.2, "Proposed Compliance Points," casts doubt on PDME’s testability.  It contains the following
statements:

Compliance to this specification is to be judged against the IDL definitions of the interfaces and
their attributes and operations.

The UML object model diagrams are not to be considered as part of the specification for the
purposes of judging compliance.  They are provided to illustrate and describe the behavior of the
IDL interfaces.

The PDME specification consists of IDL, Unified Modeling Language (UML),17 and informal descriptions.
The language above disclaims the UML and informal descriptions, leaving only the IDL as a possible target
for formal testing.  IDL defines the signatures of operations but it does not define what they do or how they
work.  A completely formal approach to conformance testing of PDME would therefore be useless.

Fortunately, the PDME specification itself supplies usage scenarios in Section 1.12, "Mapping the Product
Development Process to the PDM Enablers."  These are the scenarios that were used to define the expected
functionality of the PDM Enablers,18 so they are presumed valid.  We had to simplify the scenarios to
achieve a manageable scope for testing, but we did not need to invent our own.

Our first two scenarios were trivial uses of DocumentManagement that did not involve product structure.
We built tests for them using Interface Testing Language (ITL), one of the input languages for the
Manufacturer’s CORBA Interface Testing Toolkit (MCITT),19,20 which is described in more detail below.

The remaining scenarios involved the less trivial ProductStructureDefinition, and we had need of some
valid test data.  No "blessed" data was available in the PDME context, but data was available for the STEP
PDM Schema and for AP20321 (AP is "Application Protocol).  PDME supplied scenarios but no data; STEP
supplied data but no scenarios (or, at best, only exchange-based ones).  This was a manifestation of the
interface-centric nature of the PDME standard and the data-centric nature of the STEP standard.



6

4.1. Test client generation

We partially automated the construction of PDME tests from STEP data using the process shown in Fig. 2.
The relevant software components are described below.  For a more detailed understanding of the steps in
the process, the reader is encouraged to review the sample data that was distributed to the MfgDTF.22

4.1.1. PDM Schema to PDM Enablers translator

The PDM Schema to PDM Enablers translator is based on EXPRESS-X23 and uses the NIST Expresso24

development environment (see Fig. 3).  Expresso processes EXPRESS, STEP’s Part 2125 file format for
instance data, and EXPRESS-X.  The EXPRESS-X schema describes the information needed for creating
calls to the PDM Enablers using a data set described by the PDM Schema.  The translator application uses
that data to generate the code that calls the PDM Enablers and outputs code in a "macroized" version of the
Interface Testing Language used by MCITT.

The macros play the role of PDME convenience functions26 for the test effort (see Fig. 4).  They are
expanded using the standard C preprocessor, which also expands directives to include common test
boilerplate.  A subsequent pass is made with TEd, the scripted test editing tool provided with MCITT, to
work around the line-breaking limitation of the C preprocessor.

In addition to making the tests more readable, the macros help to increase the flexibility of the test system.
The PDME specification often specifies no normative ordering for the operations that are needed to
accomplish a given convenience function, yet implementations in practice do require particular orderings.
Macros help to accommodate the needs of these different implementations.  Instead of changing many
operations in many tests, we just change the macro, and the changes become effective in every instance.

Translation
and
code

generation

Compilation
and linkage

Executable
test client

STEP test
data

Schemata and
mappings

Code templates

Infrastructure

Figure 3:  PDM Schema to PDM Enablers translator
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STEP PDM Schema
(EXPRESS)

Mapping
(EXPRESS-X)
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PDME client
code

(ITL/cpp)

Figure 2:  Test client generation
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The mapping of STEP PDM Schema data into the PDM Enablers is imperfect in that we limited the scope
of the data mapped in order to get a prototype working but also in that the feature spaces of the PDM
Schema and PDM Enablers are not identical.  The PDM Schema includes some features, such as approvals,
that are omitted from PDME, while PDME includes other features, such as extra mechanisms for relating
documents to parts, that the PDM Schema does not have.  Testing of some features therefore required
manual coding.  Nevertheless, generating a test case using STEP test data covered most of the relevant
PDME features and was clearly preferable to building an entire test case from scratch.

4.1.2. Manufacturer’s CORBA Interface Testing Toolkit

MCITT, a CORBA testing toolkit with a variety of useful functions, was originally produced in support of
the Advanced Process Control Framework Initiative27 and the National Advanced Manufacturing Testbed
Framework Project.28  In the PDME test building process, MCITT is used to translate Interface Testing
Language into C++ bound to a particular CORBA product (see Fig. 4).

One could view the usage of MCITT in the test generation process as a second layer of macro processing
after the expansion of the PDME macros mentioned above.  MCITT includes yet more boilerplate and
expands some ITL commands to large blocks of CORBA C++.

MCITT’s Interface Testing Language (ITL) and Component Interaction Specifications (CIS) are also used
to specify and generate the reference servers needed for determination of the test verdict as described
below.  For details of MCITT and its specification languages, please see the cited references.

4.1.3. Comparator

The previously described Comparator is linked into the final executable test from a separately maintained
object code library (see Fig. 5).  This is a trivial step; the interesting issues related to the Comparator occur
earlier, in the design stage, while defining a binding between it and the PDM Enablers.

PDME does not fit the idealized Comparator view of object-oriented systems; some important state
information is only accessible through a series of operations, and some attributes are not significant.  For
example, consider the SecuredFile interface:

Version 1.1 IDL, abridged (with exceptions removed):

interface SecuredFile: File
{

attribute long size;
attribute MimeType type;
string get_pathname();
string get_url();
long begin_put_buffer(in long bufsize, in long filesize,

in MimeType type, in string transfer_encoding);
void put_buffer(in buffer buf);

Figure 4:  Macro expansion and code generation

C preprocessor MCITT

PDME client
code

(ITL/cpp)

PDME macros
and boilerplate

(ITL/cpp) PDME IDL

Test client
code (C++)

IDL compiler CORBA
stubs (C++)
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void end_put_buffer();
long begin_get_buffer(in long bufsize,

in string transfer_encoding);
buffer get_buffer();
void end_get_buffer();

};

Inherited attributes:  name, created_date, last_modified_date, short_description, long_description,
related_object, roles_of_node, constant_random_id

Inherited operations:  get_id, get_id_seq, bind, change_id, is_locked, lock, unlock, get_info,
set_info, get_viewable_info, get_updatable_info, copy, move, remove, copy_node, move_node,
remove_node, get_life_cycle_object, roles_of_type, add_role, remove_role, is_identical

In this example, PDME practice diverged from Comparator theory in the following ways:

1. Some pieces of information that contain state, such as pathname and URL (Uniform Resource
Locator),29 are instead represented as operations.

2. The most important state information for a SecuredFile – its content – is not an attribute.  To access it,
the client must execute a nontrivial data transfer protocol.

3. The created_date, last_modified_date, and constant_random_id attributes are not comparable between
the IUT and the reference.

4. The related_object attribute is there even though it makes no sense in this context.30

Fortunately, there is a practical solution.  The Comparator already requires a "binding" for each context
(i.e., PDME or STEP) to map the Comparator's generic node (object), edge (relationship), and attribute
concepts onto the features that realize these concepts in the specific context.  The problem was easily
solved by extending the binding to do arbitrary projections31 instead of just mappings (see Fig. 6).

Within the binding, attributes are flagged for one of three kinds of treatment:  print values and compare,
print values only, or skip.  "Good" attributes are both printed and compared.  Volatile attributes that cannot
match the reference are printed but not compared; a failure in the attempt to retrieve the attribute’s value
can still impact the test verdict.  Finally, attributes that are not really attributes at all, such as those that get
projected as relationships, are skipped.  (Relationships are checked by graph traversal, which is a different
part of the process than this value-comparison.)

Figure 5:  Compilation and linkage
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4.2. Testability of PDM Enablers

4.2.1. Application interface specification

PDME is precisely an application interface specification for a PDM system, so no testability problems
related to application access were found.  However, there is not necessarily any alternative interface that
could be used to corroborate the results of testing over the PDME interface or to verify that the mapping
between PDME concepts and the internal business schema of the PDM is meaningful.

4.2.2. Implementability of the specification

PDME inherits Common Object Services in which some interfaces inherit other interfaces by multiple
paths.  This case requires special treatment in C++, and unfortunately it was not properly handled by our
IDL compiler.  To work around, we used a combination of IDL changes and edits to the output of the IDL
compiler.  Meanwhile, we submitted the problem as OMG Issue #2345 which has been assigned to the C++
Revision Task Force (RTF).32

Another implementability issue concerns the imperfect realization of the PDME model for Substitute by
CosGraphs and CosRelationships.  The concept of "substitute" is defined as follows:

A Substitute is a component within an assembly whose form, fit, and function might be different
from the component for which it is a replacement, but that can fulfill the requirements of another
part within the context of the assembly.  A substitute is specified by defining another usage
relationship, the substitute, which can replace the original usage relationship, the base.33

Substitute was modeled as a relationship between two Usages, which themselves are relationships between
Parts.  But the resulting model cannot be well-realized using CosGraphs because it would require an edge
that connects other edges, which is not supported.  The realization used in PDME effectively creates two
separate "graphspaces," one in which Usage appears as an edge and one in which Usage appears as a node.
To navigate from a Part to a Substitute relationship, a client has to stop and cast the Usage object from edge
to node and initiate a new traversal.

Handling this operation transparently in the Comparator binding would have been very messy; instead, we
made two separate calls to the Comparator in the test client, one for each "graphspace."

SimplifiedSecuredFile

begin_get_buffer(x,y,z)
get_buffer()
end_get_buffer()

SimplifiedSecuredFile′
file_contents:  blob

related_object:  RelatedObject

Figure 6:  Projecting an object
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4.2.3. Functional specification

The PdmStep module of PDME defines two operations, StepTranslator::import and StepTranslator::export,
to support the use of STEP for PDM data exchange.  The function of the import operation is to "instantiate
new PDM entities corresponding to the entities contained in [a STEP Part 21 file]."

PDME Section 2.12.1, "PdmStep Overview," explains that the mapping of STEP data into the PDM
Enablers "schema" is non-trivial:

The PDM Enablers interface models are guided by STEP.  However, the PDM models are not a
representation of STEP Application Interpreted Models (AIM).  Rather the PDM models represent
user-level objects that are analogous (but not identical) to corresponding Application Resource
Models (ARM) from various Application Protocols.

The problem is that neither PDME, nor STEP, nor any other formally recognized specification existing at
this time defines a mapping in either direction.  There is no specification for which PDME entities are to be
instantiated as a result of importing any given Part 21 file.

The MfgDTF considers this out of scope for the PDME specification but acknowledges that such a
mapping is necessary to achieve interoperability.  However, there is disagreement over how specific such a
mapping should be.  The feasible mappings depend on the internal "business schema" of the PDM, and the
MfgDTF will not invalidate any existing commercial product by constraining that schema.  Nevertheless,
several efforts are underway involving the MfgDTF and PDES Inc.34 to reach some agreement.  Ford,
Boeing, ProSTEP,35 and NIST have created their own mappings independently, but these have not achieved
consensus approval or been widely published.

4.2.4. Usage specification

One of the most common usage scenarios for a PDM is checking in a new revision of a document.  PDME
defines lots of operations that might be used somewhere in this scenario, but these operations could be
performed in the wrong order or invoked on the wrong object.  For example, consider locking.  In PDME,
every ManagedEntity inherits lock() and unlock() operations from the PdmFoundation class Lockable.
Almost everything is a ManagedEntity, so almost everything is Lockable.  SecuredFile, DocumentMaster,
DocumentRevision, and DocumentIteration are all Lockable.  Which of these must be locked for a
checkout, and unlocked upon checkin?  Also, what is different if we are checking in a completely new
document?  Are new entities created in the locked or unlocked state?

PDME does contain an attempted usage specification for document checkin, but it proved to be
problematic.  We raised this as OMG Issue #2485, assigned to the PDM RTF.36

Another usage issue arises where PDME defers to a particular STEP AP without specifying what happens
for other APs.  It is unclear what to do about PartMaster::part_type and part_classification if a part has
multiple classes or just doesn’t mesh with AP203.  We raised this as OMG Issue #2622.37  We later learned
that the AP203 references were a legacy from before when the MfgDTF shifted its focus from AP203 to the
STEP PDM Schema, and should be removed.38

4.2.5. Completeness of functional specification with respect to usage

Identifications are needed for practically every PDM usage scenario.  An IdentificationContext is a
prerequisite for applying identifications to created PDME entities.  Known IdentificationContexts can be
retrieved using IdentificationContextFactory::find_id_context (in string the_context_name), but there is no
IdentificationContext named in the PDME specification and no function to retrieve a default context.
Similarly, IdentificationContextFactory::create takes a catch-all PropertySet as its only argument, and there
is no normative usage that would guarantee a successful create.

From a usability standpoint, a normative context would be little value added.  PDME does not specify a
context because most companies need to define their own contexts anyway.  Likewise, the relevant
properties for creating a new context are company-specific.  But the lack of a normative context hurts
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testability since the test suite must be customized to use whatever contexts happen to be available at each
deployment.

For better testability, PDME could have defined a normative test context that all implementations would
support.  It did not need to be complicated; its only purpose would have been to support the testing of other
features.

Identifications are also problematic from the perspective of database integrity.  The method to create an
Identifiable object with a given initial identifier is not clear.  It would be harmful for unidentified entities to
persist in the PDM, so one would expect to provide some form of identification when creating an entity.
But PdmFoundation::IdentificationFactory::create requires the Identifiable to have been created already.

A rule of thumb being used by the PDME implementers is that the initial values of attributes (broadly
interpreted) of entities that are being created may be supplied in the PropertySet given to a Factory::create
method, setting property_name to the name of the attribute and property_value to the initial value.  A client
could use this method to supply an initial identification; however, this interpretation is not normative.
There is nothing actually in the specification to prevent unidentified entities from persisting.

The functional specification is also incomplete with respect to the usage of Attributable to supply part data,
such as classifications and cost estimates, which appear in the usage scenarios.  Although the interface for
supplying attributes is defined, the implementation is not actually required to support any particular set of
attributes, and support for ad hoc attributes is optional:

This technique allows access to all legal attributes for the managed item in the PDM system, even
those that are not exposed to clients through the IDL definitions.  PropertySets support the
manipulation of attributes that are known to a customized PDM system but are not specifically
exposed by IDL.  And PropertySets defined and created by the client support the manipulation of
ad hoc or loose attributes that are not known to the PDM system’s schema (if the PDM system
supports ad hoc attributes).39

4.2.6. Interaction specification

PDME relies on another OMG-specified component, Workflow,40 to handle approvals.  Approvals are
delegated to Workflow, but Workflow is generic and does not define specific usage for approvals.  The
interactions between PDME and Workflow are not specified.  The first draft of a white paper attacking this
problem has just been written,41 but there is still no agreement on which component, if either, is a client of
the other.  (Plausibly, both could be servers of a third component that completes the integration.)

4.2.7. Specification of precision and limits

Section 2.6.3.12 of PDME, "Data Transfer," rightly specifies a minimum limit on the negotiated buffer size
(256 bytes).  This avoids a potential challenge from the vendor of an implementation claiming a maximum
buffer size of 1 byte.  (If the product being wrapped does not already support buffered data transfer, the
degenerate case effectively avoids the need to implement it.)

Most of the data in a PDM remains uninterpreted by the PDM system, so precision is not a major issue in
this case.

5. Analysis of the test method

Since one of our goals is to derive a test method that is usable for interaction-driven manufacturing systems
in general, we have analyzed the PDME testing approach for features that could impact its reusability in
other contexts.

5.1. Features of testing approach

The testing approach that was used for PDME requires a reference for determination of the test verdict.
With no trusted PDME implementations available, we must define the expected results for each scenario
using an MCITT script (CIS).  Although defining a reference emulation for any particular scenario is not
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difficult, the high degree of automation of the test creation process puts pressure on the relatively labor-
intensive activity of defining the references, particularly with respect to the explosion of interactions
performed by the Comparator.

To speed up the generation of server emulations, we created two more code generation tools:  out2cis and
makecomp.  The scripted responses to the interactions performed in the test scenario are generated from the
test client source code, while the long scripts needed to "feed" the Comparator are generated from much
shorter Extensible Markup Language (XML)42 descriptions of the expected PDME database contents.
Unfortunately, the explosion of interactions from the Comparator combines with the linear code generation
style of MCITT to produce an explosion in the size of the source code needed to emulate a reference.  The
resulting tests were built successfully on a heavy-duty desktop machine, but lessons learned include that
our approach is not scalable to much larger test cases than our PdmProductStructureDefinition test.

Clearly there exists some number of tests beyond which it would be less effort to build a reference
implementation than to create individual reference scripts for each test.  However, any test suite faces a
similar challenge.  Completely automatic conformance testing is only possible if the specification defines
all of the correct behaviors in a machine-processable way, but this is effectively the same as having built a
reference implementation already.  After all, that is what source code is – a machine-processable
specification of behavior.

Finally, although we succeeded in mostly automating the generation of test code, the resulting test
generation process is more complex than one would want for a non-experimental test suite.

5.2. Features of Comparator implementation

The most significant problem found in applying the Comparator approach to PDME was with the
identification of PartStructures.  PartStructure objects are not distinguishable from one another except by
their associations with other objects or by implementation-dependent means.  They have no persistent,
unique, external identifiers; they have only their run-time object handles and the constant_random_id
attribute inherited from CosObjectIdentity.  This violates a critical assumption that was made in the
Comparator approach, that nodes in the graph will be identifiable and distinguishable.  Because of this, it is
nontrivial to establish an association between PartStructures in the reference server and PartStructures in
the IUT.

The existence of objects that are not distinguishable is a significant complication that we did not consider.
Comparing state object-by-object was not a requirement for the Comparator.  The system state could have
been defined more generally, requiring a certain number of  PartStructure nodes with certain relationships
instead of designating which nodes have which relationships.  With extensive reworking of the
Comparator, it would be possible to relax the condition on distinguishability of nodes.  To work around the
problem less expensively, we synthesized identifiers for the PartStructures using the identifiers of the nodes
to which they are related.

One of the services that is provided by a Comparator binding to a particular database is a function to find
all relationships pertaining to a given object.  In PDME this can be done using CosGraphs; in SDAI this
can be done using the "Find entity instance users" operation.43  But many object systems use one-
directional pointers and do not supply any "find object users" operation.  In these cases, the comparison of
the databases would have to be initiated from a well-connected node from which all other nodes are
reachable.

6. STEP SDAI / PDM Schema

SDAI is a standard for programmatically accessing data described by the information models in STEP.
Unlike the PDME specification, which implicitly constrains operations on data by supplying relatively
coarse-grained access, SDAI provides fine-grained, unconstrained access to data.  This means, for instance,
that SDAI does not impose an order on the creation of instance data – using SDAI, the entity corresponding
to a version of a product might be created before the entity for the product itself.  However, SDAI does
provide a function, "check all global constraints," to check that existence constraints are met.  On the
surface, this approach is inferior to disallowing the behavior implicitly; however, there are times when such
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fine-grained control is actually a benefit.  For example, if every instance of A is constrained to have a
corresponding instance of B, and the reverse is also true, it is not possible to create any instances at all
unless constraint checking can be deferred until both have been created.

The most significant impact on testing is that a system hosting SDAI is allowed to reach an inconsistent
state.  In other words, there may be points in the execution of a test case at which the data will visibly fail
to conform to all of the constraints imposed by the standard, yet the IUT will still be considered
conforming.  It is therefore necessary for testing purposes to identify those points during a test case’s
execution at which all constraints should be satisfied.  In database terminology, these points define
transaction boundaries.  All constraints must be satisfied at the end of the transaction, but while the
transaction is in progress, the database may pass through an inconsistent state.

Given a particular application, the end of a transaction is evident from the semantics of the application.
However, these semantics are not defined in a manner that can be used for an automated testing system.
We will now describe two approaches to automating the testing process for SDAI having different
transaction boundaries.

6.1. Testing approaches

Since the information models in STEP are static and do not include operational models, they provide little
insight into what would be appropriate bounds for transactions.  The only real definition of transactions is
in the context of the exchange of an entire product model.  As depicted in Figure 7, this model consists of
two transactions:  the production of the exchange file and the consumption of the exchange file.  The first
transaction, typically read-only, starts when the file is produced.  It is not very interesting from the
perspective of interactive testing since it does not change the state of the underlying system.  (It is
interesting from the perspective of testing for compliance with STEP, since producing a conforming
exchange file is a significant compliance point.)  The second transaction begins when the exchange file is
read into the receiving system and ends when the entire file has been processed and the state change is
complete.

The operational model for SDAI (see Fig. 8) is somewhat different than that for data exchange since it
contains a shared database; however, the only known uses of the interface thus far have been in the context
of the static information models that were designed for file exchange.  In the SDAI operational model,
multiple applications operate against the same set of data.  Both applications can see updates to the data set,
and both applications can change the data set.  For a more complete discussion of the differences between
data exchange and data sharing, see "Chapter 6:  Sharing versus Exchanging Data," of STEP the Grand
Experience.44

Application A:
Creates new Part Revision

Application B:
Assigns Part Substitutes

Write complete product data to file

Read File

 Exchange File 

Figure 7:  Operational model of file exchange
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Given the prevailing operational model for STEP, the first approach to automate testing of SDAI is to
transfer transaction boundaries as defined for file exchange into the SDAI context.  In other words, a
transaction would consist of the creation of a complete set of data for representing a product.  This type of
transaction would not address any incremental changes to the data set or any conflicts that could arise based
on shared use of the data.  As with file exchange, the entire data set would be validated at one time for
conformance with the information model.

The second approach to automating the testing process looks beyond STEP for the definition of
transactions.  It is a scenario-based approach in which scenarios are defined for the application context.
The definition of data sharing scenarios for SDAI access is analogous to the definition of abstract test suites
for data exchange.  To validate this approach, we look to apply it in the PDM context where we have
suitable scenarios described within the OMG PDM Enablers specification.  Fortunately, the PDM Enablers
specification and STEP specifications in this area are very compatible.

Using a scenario-driven approach, transaction boundaries are defined based on the semantics of the
scenarios that mimic the applications for which the interface is intended.  These scenarios call for
incremental changes to the PDM system, such as creating new versions of parts and establishing
relationships amongst the data.  In this situation, incremental changes should not require validation of the
entire data set.  One of the remaining challenges is to define a scope for the data that would need to be
validated after an incremental change.

6.2. Test system design

Figure 9 depicts a simple test system that uses the exchange model to define transaction boundaries.  This
system is relatively straightforward to produce but the tests would not be conceptually much different than
those for file exchange.  They would not really exercise the capabilities of SDAI.

The scenario-driven approach to testing implies a different test method.  We plan to validate this approach
through prototyping.  The prototype test system will reuse some of the code generation technology
developed for PDM Enablers testing, but in this system the test-client code will be a series of SDAI calls
instead of PDME operations.

Part 21 File
Code

generator /
algorithmic

mapping

SDAI client
code

EXPRESS
Engine

STEP PDM Schema
(EXPRESS)

Figure 9:  Exchange-driven approach

PDM Data

Application A:
Creates new Part Revision

Application B:
Assigns Part Substitutes

Figure 8:  Operational model for data sharing
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The prototype test system will test an SDAI interface to the PDM Schema.  The scenarios will be derived
from the PDM Enablers specification and populated with data corresponding to the PDM Schema.  These
scenarios will be executed against an existing PDM Enablers implementation that uses the PDM Schema as
its internal data model.45  The PDM Enablers implementation will translate calls to the Enablers to
operations on the PDM Schema that we can easily transform into equivalent SDAI operations.  We will
then be able to reuse our existing PDME test cases to test SDAI/PDMS.  The test system is depicted in
Figure 10.

The test system will generate the basic data access calls as well as data validation calls to check that the
system is in a consistent state.  The Comparator will then perform an external check of the data values
themselves.

6.3. Testability considerations

Four Parts of STEP are involved in testing an implementation of STEP using SDAI as its access
mechanism:  EXPRESS, SDAI, an SDAI language binding, and the Application Protocol (AP) itself.  (For
our study we have chosen to use the PDM Schema in the place of an AP since it is smaller and will be
included in several APs.)

EXPRESS is used to represent an information model that captures many of the application requirements.
SDAI is the functional specification of the data access mechanisms and hooks for checking data constraints
at run-time.  The SDAI language binding is the manifestation of those functions as operations in a
particular programming language.  Finally, the AP specifies the particular application requirements using
the features available in both the EXPRESS and English languages.  "Conformance to STEP" implies
conformance to the relevant combination of these parts.

EXPRESS is a declarative language.  It has no execution model – that is, no semantics associated with an
ordering of events.  It is used to describe the "world" as it should be rather than how the world is
constructed.  SDAI is the programmatic piece of the puzzle.  SDAI specifies a generic operational model
for how to access data and how to check constraints complete with error conditions.  SDAI does not specify
any of the semantics of an application and as such does not specify how errors should be treated.  An AP
specifies the semantics of an application area.

Testing of STEP exchange files is rather straightforward.  They can be tested for conformance with an
EXPRESS declaration; the test is whether the world is as it should be.  To test an implementation based on
SDAI one must test how the world is constructed.  Testing an "implementation of STEP" using SDAI
requires extensions to the AP to specify semantics for entity construction and transactional boundaries.
The mechanisms provided by SDAI can assist in implementing those semantics, but neither part is
complete without the other.  The four testability issues detailed below particularly stand out as not being
fully covered by the existing specifications.

6.3.1. Application-defined transactions

As discussed previously, a primary consideration for testability of SDAI implementations is the need to
define meaningful transactions to test.  In the exchange-based operational model the unit for testing is the
entire product model as embodied in static exchange file.  The file itself can be tested for conformance to
the standard.  Problems in the file indicate problems with the producing system.  The other extreme, in the

Figure 10:  Scenario-driven approach
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SDAI operational model, would be to test the entire database after each operation.  Not only is this
approach inefficient since each SDAI operation affects only a small portion of the entire data set, it is also
not realistic since many SDAI operations will leave the data set in an invalid state.  A suitable median
needs to be defined.

6.3.2. Application interface specification

In order to test whether a system is capable of producing valid data, one must have a means for it to first
consume valid data.  In existing, exchange-based, STEP conformance tests the initial data set is input into
the system through a non-standard interface.  The tests would not be credible if the system were allowed to
read in an exchange file and then reproduce it because a null filter or word processor would pass.

In the SDAI operational model, it is not necessary to use any non-standard interfaces to input or retrieve
data.  Moreover, for applications like the PDM Schema, it is likely that implementations that supply no
other interfaces will be built.  Even the capability to load an exchange file is not required of SDAI
implementations.

These facts lead to the conclusion that it is only logical to reverse the order of tests for SDAI (relative to the
current testing practice for file exchange):  first test whether the system consumes valid data and then test
whether it produces valid data.  This reality highlights the importance of a usage scenario in developing an
abstract test suite for a standard.  While the resulting scenario is similar to the testing that was done for
PDME, STEP conformance testers are used to the higher level of assurance that is given by testing over
multiple interfaces.

6.3.3. Usage specification:  ordering of operations

Valid SDAI operations may exist that the hosting system is not able to support but that do not denigrate the
service provided by the system.  Consider the example of the operational constraint that a product master
must exist before a product version can be created.  A system that enforces this constraint in its internal
business schema would not allow it to be violated through SDAI or otherwise.  (This could be a legacy
PDM system wrapped by an SDAI/PDM Schema interface, which is a usage of SDAI that was clearly
intended.)  Moreover, a user of the system might not want to allow the operational constraint to be violated.
However, a strict interpretation of the existing specifications could label such a system as non-conforming.

6.3.4. Implementability of the specification:  deferred constraint checking

SDAI provides flexibility in handling invalid data.  The special SDAI operations to validate data do not fit
the exchange file operational model, where invalid data are signaled when the file is loaded, but they
present their own set of considerations.  In particular, to test the SDAI validation operations one must be
able to input invalid data and then test that the validation functions catch the errors.  With error classes such
as existence requirements this approach is logical.  If an entity instance has a required attribute that has not
been assigned a value, then the check for required attributes should produce an error code.  With other error
classes the approach does not work.  For example, if an aggregate has a limitation on its bounds, would it
really be non-conforming behavior to disallow the out-of-bounds insertions immediately instead of waiting
for the "validate aggregate bounds" function to be called?  In the extreme case, since EXPRESS allows for
infinitely large aggregates, all implementations would be non-conforming.

This example highlights a possible problem with our conformance criteria.  In most cases, an
implementation that checked constraints on insert would simply be non-conforming; the SDAI standard
clearly states "EXPRESS constraints are validated only at the request of the application."46  But if
EXPRESS constraints are used to define acceptable hard limits for the underlying database, as they were in
this example, then the deferred validation requirement of SDAI might not be implementable.

Furthermore, the SDAI specification clearly allows a system to remain in an inconsistent state since
transactions can be committed with invalid data.  Application semantics must be defined to signal the
logical end of a transaction – the point at which all data must be in a valid state.  These transactions need
not correspond one-to-one with SDAI transactions, resulting in an unfortunate name collision.
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In light of this flexibility, interpretation of test results will be difficult.  A strict interpretation of the SDAI
specification would reveal the "correct" results; however, in reality, implementations may handle invalid
data in different ways.  A strict comparison of results with a reference implementation may not suffice, but
it could be very difficult to develop a reference implementation that can mimic any "correct" interpretation.

We expect other testability considerations to arise as we gain more experience in implementing the
prototype test system.

7. Conclusion

The work of the TIMS project will continue through SDAI/PDM Schema testing and on to testing of larger,
interacting systems of components.  Thus far, our testability work has produced the following guidelines
for improving the testability of future specifications:

• First ensure that the specification is implementable.  No one can test something that cannot be built.

• Define an application interface.  It is very difficult to automate the testing of a system that only
provides a nonstandard graphical user interface.

• Eliminate dependencies on unspecified features.  If a particular implementation-defined facility is
required to execute a usage scenario, specify an inexpensive, built-in testing version of the facility.

• Strive for completeness in the functional specification.  Unanswered questions about what a given
operation does harm testability, usability, and interoperability.

• Define a set of usage scenarios and ensure that all functions required to execute them are specified
fully.

• Specify usage as well as functionality.  Include the usage scenarios in the document as examples, and
require the implementation to support them.  If the system is transactional, define the transaction
boundaries.

• If the component in question is not self-sufficient, fully specify all interactions with other components
and validate these interactions against the other specifications.  Supply sequence diagrams showing the
interactions that occur for the usage scenarios.

• Leave no hard limits or precision unspecified.

• If objects of a particular class have so little value added that it is not worth distinguishing one instance
from another, consider getting rid of them entirely.

The importance of usage scenarios cannot be overemphasized.  STEP includes Abstract Test Suites for
each Application Protocol.  These test suites are usage scenarios for data exchange.  The developers of
STEP recognized the role of test suites in achieving the interoperability goal.  In a data sharing
environment such as that provided by SDAI, usage scenarios are even more important for defining bounds
for transactions.  Similarly, with PDME, usage scenarios are necessary guidelines for achieving
interoperability.

Of foremost importance for manufacturing systems integration is that the interface specifications support a
cohesive world view.  A cohesive world view reflects design interoperability.  This area has gone largely
untouched in research on systems integration and tools to support system testing.  A cohesive world view
does not mean that components for which the interfaces are specified should share the same world view but
rather that the world views need to come together in a meaningful way.  The interfaces are the points of
coherence.  Thus, testing for compliance to an interface means testing whether the system supports the
world view.

In our research, we are not asking the question how do we implement systems to support testability, but
rather how do we define interfaces to support testing of the systems that implement those interfaces.  Just as
researchers of the former question conclude that the most complete form of testing that can be done uses
formal methods, we must conclude that an interface can be most fully tested when it is completely
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specified.  However, a complete specification cannot really be less than a complete implementation, often
called a reference implementation.

Complete specification is in contention with the goal of an interface as a bridge between, often pre-existing,
implementations.  A reference implementation may be too costly to produce, may restrict the interface
more than is necessary to support system interoperability, or conversely may allow for more freedom in the
interface than is desirable.  In short, there is no good way to verify that a reference implementation supports
the interoperability requirements inspiring the interface specification.  Furthermore, a reference
implementation still does not provide usage guidelines such as are necessary for producing relevant and
meaningful tests.

What is the solution to this dilemma?  To enable testability, an interface specification must have a strong
and agreed-upon set of requirements which can take the form of usage guidelines or scenarios.  Usage
guidelines or scenarios are the interpretive information necessary to explain an interface in a manner that
conveys the world view that the interface supports.  Working without such guidelines is the equivalent of
trying to teach calculus without examples – a nearly impossible undertaking.  An interface is only useful if
people know how to use it.
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